Composition of Functions

Let $f : A \to B$ and $g : B \to C$ be two functions. Then the composition of f and g, denoted by gof, is defined as the function $gof : A \to C$ given by

Q. Let $f, g: \mathbb{R} \to \mathbb{R}$ be two functions defined as f(x) = |x| + xand g(x) = |x| - x, $\forall x \in \mathbb{R}$. Then, find $f \circ g$ and $g \circ f$.

Solution.

Here f(x) = |x| + x which can be redefined as

$$f(x) = \begin{cases} 2x \text{ if } x \ge 0\\ 0 \text{ if } x < 0 \end{cases}$$

Similarly, the function g defined by g(x) = |x| - x may be redefined as

$$g(x) = \begin{cases} 0 \text{ if } x \ge 0\\ -2x \text{ if } x < 0 \end{cases}$$

Therefore, $g \circ f$ gets defined as :

For $x \ge 0$, $(g \circ f)(x) = g(f(x) = g(2x) = 0$ and for x < 0, $(g \circ f)(x) = g(f(x) = g(0) = 0$. Consequently, we have $(g \circ f)(x) = 0$, $\forall x \in \mathbf{R}$.

Vinod A V, PGT Maths, JNV Thrissur Similarly, fog gets defined as:

For $x \ge 0$, $(f \circ g)(x) = f(g(x)) = f(0) = 0$,

and for x < 0, $(f \circ g)(x) = f(g(x)) = f(-2x) = -4x$.

i.e.
$$(f \circ g)(x) = \begin{cases} 0, x > 0 \\ -4x, x < 0 \end{cases}$$

Properties of Composition of Functions

- The composition of functions is not commutative. *i.e.f* ∘ g ≠ g ∘ f
- ➤ The composition of functions is associative. *i.e*, if *f*, *g*, *h* are three functions such that (*f* ∘ *g*) ∘ *h* and *f* ∘ (*g* ∘ *h*) exist, then (*f* ∘ *g*) ∘ *h* = *f* ∘ (*g* ∘ *h*).
- The composition of two bijections is a bijection. *i.e*, if *f* and *g* are two bijections, then *g f* is also a bijection. *Proof*

Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be two bijections. To prove

 $g \circ f : A \to C$ is also a bijection.

Suppose $gof(x_1) = gof(x_2)$

$$\Rightarrow g(f(x_1)) = g(f(x_2)),$$

 $\Rightarrow f(x_1) = f(x_2)$, since *g* is one-one

 $\Rightarrow x_1 = x_{2}$, since *f* is one-one

 \Rightarrow *gof* is one-one.

Now to prove onto.

Given an arbitrary element $z \in C$, there exists a pre-image y of z under g such that g(y) = z, since g is onto. Further, for $y \in B$, there exists an element x in A with f(x) = y, since f is onto. Therefore, gof(x) = g(f(x)) = g(y) = z, showing that gof is onto.

➤ Let $f: A \to B$. Then, $f \circ I_A = I_B \circ f = f$ *i.e* the composition of any function with the identity function is the function itself.

Vinod A V, PGT Maths, JNV Thrissur

Invertible Function

A function $f : X \to Y$ is defined to be invertible, if there exists a function $g : Y \to X$ such that

 $g \circ f = I_x$ and $f \circ g = I_x$.

The function g is called the inverse of f and is denoted by f^{-1} .

Thus, if $f: A \to B$ is a bijection, then $f^{-1}: B \to A$ is such that $f(x) = y \Leftrightarrow f^{-1}(y) = x$.

Properties of Inverse of a Function

- > The inverse of a bijection is unique.
- The inverse of a bijection is also a bijection.
- Let f : X → Y and g : Y → Z be two invertible functions.
 Then g o f is also invertible with (g o f)⁻¹ = f ⁻¹ o g⁻¹.
 Proof

Since f and g are invertible both functions are bijections, hence $g \circ f$ is also a bijection and so invertible.

Now to show that $(gof)^{-1} = f^{-1}og^{-1}$, it is enough to show that $(f^{-1}og^{-1})o(gof) = I_x$ and $(gof)o(f^{-1}og^{-1}) = I_z$. Now,

$$(f^{-1}og^{-1})o(gof) = ((f^{-1}og^{-1}) og) of, \text{ since composition of functions are associative.}$$
$$= (f^{-1}o(g^{-1}og)) of,$$
$$= (f^{-1} ol_x) of, \text{ by definition of } g^{-1}$$
$$= l_x.$$

Similarly, it can be shown that $(gof)o(f^{-1}og^{-1}) = I_z$.

Q. Let $f : X \to Y$ be an invertible function. Show that the inverse of f^{-1} is $f, i.e., (f^{-1})^{-1} = f$.

Vinod A V, PGT Maths, JNV Thrissur