READABLE NOTES

- Direction cosines of a line: Direction cosines of a line are the cosines of the angles made by the line with the positive directions of the coordinate axes.
- If $l_{m}m_{n}^{2}$ are the direct ion cosines of a line, then $1^{2} + m^{2} + n^{2} = 1$
- Direct ion cosines of a line joining two points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ are $\frac{x_2 - x_1}{PQ}$, $\frac{y_2 - y_1}{PQ}$, $\frac{z_2 - z_2}{PQ}$

• where $PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$

- Direction ratios of a line are the numbers which are proportional to the direct ion cosines of a line.
- If l, m, n are the direct ion cosines and a, b, c are the direct ion ratios of a line

Then,
$$1 = \frac{a}{\sqrt{a^2 + b^2 + c^2}}$$
, $m = \frac{b}{\sqrt{a^2 + b^2 + c^2}}$, $n = \frac{c}{\sqrt{a^2 + b^2 + c^2}}$

- **Skew lines**: Skew lines are lines in space which are neither parallel nor intersecting. They lie in different planes.
- **Angle between two skew lines**: Angle between skew lines is the angle between two intersecting lines drawn from any point (preferably through the origin) parallel to each of the skew lines.
- If l_1 , m_1 , n_1 and l_2 , m_2 , n_2 are the direction cosines of two lines; and θ is the acute angle between the two lines; then,
- Vector equation of a line that passes through the given point whose position vector is \bar{a} and parallel to a given vector \bar{b} is $\bar{r} = \bar{a} + \lambda \bar{b}$
- Equation of a line through a point (x_1, y_1, z_1) and having direct ion cosines l, m, n is $\frac{x - x_1}{1} = \frac{y - y_1}{m} = \frac{z - z_1}{n}$
- The vector equation of a line which passes through two points whose position vectors are \vec{a} and \vec{b} is $\vec{r} = \vec{a} + \lambda(\vec{b} - \vec{a})$

• Cartesian equation of a line that passes through two

points
$$(x_1, y_1, z_1)$$
 and (x_2, y_2, z_2) is $\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$

• If θ is the acute angle between $\mathbf{r} = \mathbf{a}_1 + \lambda \mathbf{b}_1$ and $\mathbf{r} = \mathbf{a}_2 + \lambda \mathbf{b}_2$ then,

$$\frac{x - x_1}{z} = \frac{y - y_1}{z} = \frac{z - z_1}{z} \qquad \qquad \frac{x - x_2}{z} = \frac{y - y_2}{z} = \frac{z - z_2}{z}$$

- If $l_1 \quad m_1 \quad n_1 \quad and \quad l_2 \quad m_2 \quad n_2$ are the equations of two lines, then the acute angle between the two lines is given by $\cos \theta = |l_1 l_2 + m_1 m_2 + n_1 n_2|$
- Shortest distance between two skew lines is the line segment perpendicular to both the lines.
- Shortest distance between $\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1}$ and $\overrightarrow{r} = \overrightarrow{a_2} + \lambda \overrightarrow{b_2}$ is
- Shortest distance between the

lines:
$$\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1}$$
 and $\frac{x - x_2}{a_1} = \frac{y - y_2}{b_1} = \frac{z - z_2}{c_1}$ is

$$\begin{array}{|c|c|c|c|c|c|} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ \hline \hline (b_1 c_2 - b_2 c_1)^2 + (c_1 a_2 - c_2 a_1)^2 + (a_1 b_2 - a_2 b_1)^2 \end{array}$$

- Distance between parallel lines $\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1}$ and $\overrightarrow{r} = \overrightarrow{a_2} + \lambda \overrightarrow{b_2}$ is
- In the vector form, equation of a plane which is at a distance d from the origin, and \hat{n} is the unit vector normal to the plane through the origin is $\bar{rn} = d$
- Equation of a plane which is at a distance of d from the origin and the direction cosines of the normal to the plane as I, m, n is bx + my + nz = d.
- The equation of a plane through a point whose position vector is a and perpendicular to the vector \vec{N} is $(\vec{r} \vec{a}) \cdot \vec{N} = 0$.
- Equation of a plane perpendicular to a given line with direction ratios A, B, C and passing through a given point (x_1, y_1, z_1) is $A(x x_1) + B(y y_1) + C(z z_1) = 0$

• Equation of a plane passing through three non collinear points $(x_{1,}y_{1,}z_{1})$

$$\begin{array}{c|cccc} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{array} = 0$$

- Vector equation of a plane that contains three non collinear points having position vectors \vec{a} , \vec{b} and \vec{c} is .
- Equation of a plane that cuts the coordinates axes

at
$$(a, 0, 0)$$
, $(0, b, 0)$ and $(0, 0, c)$ is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.

- Vector equation of a plane that passes through the intersection of planes $\overrightarrow{r} . \overrightarrow{n_1} = d_1$ and $\overrightarrow{r} . \overrightarrow{n_2} = d_2$ is $\overrightarrow{r} (\overrightarrow{n_1} \lambda \overrightarrow{n_2}) = d_1 + \lambda d_2$, where λ is any non-zero constant.
- Cartesian equation of a plane that passes that passes through the intersection of two given planes $A_1x + B_1y + C_1z + D_1 = 0$ and $A_2x + B_2y + C_2z + D_2 = 0$ is $(A_1x + B_1y + C_1z + D_1) + \lambda(A_2x + B_2y + C_2z + D_2 = 0$

• Two lines
$$\overrightarrow{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1}$$
 and $\overrightarrow{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}$ are coplanar if

• Two planes $a_1x + b_1y + c_1z + d_1 = 0$ and $a_2x + b_2y + c_2z + d_2 = 0$ are

 $\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$

coplanar if

- In the vector form, if θ is the angle between the two planes, $\overrightarrow{r} \cdot \overrightarrow{n_1} = d_1$ and $\overrightarrow{r} \cdot \overrightarrow{n_2} = d_2$, then
- The angle $\stackrel{\Phi}{=}$ between the line $\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b}$ and the $\sin \phi = \frac{\overrightarrow{b} \cdot \widehat{n}}{|\overrightarrow{b}| |\widehat{n}|}$

plane $\overrightarrow{r}.\widehat{n} = d$ is

• The angle θ between the planes $A_1x + B_1y + C_1z + D_1 = 0$ and $A_2x + B_2y + C_2z + D_2 = 0$ is given $\cos \theta = \left| \frac{A_1A_2 + B_1B_2 + C_1C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}} \right|$

- The distance of a point whose position vector is \vec{a} from the plane $\vec{r} \cdot \hat{n} = d$ is $|d \vec{a} \cdot \hat{n}|$
- The distance from a point (x_1, y_1, z_1) to the plane Ax + By + Cz + D = 0 is $\frac{|Ax_1 + By_1 + Cz_1 + D|}{\sqrt{A^2 + B^2 + C^2}}$
- Equation of any plane that is parallel to a plane that is parallel to a plane Ax + By
 + Cz + D = 0 is Ax + By + Cz + k = 0, where k is a different constant other than
 D.