CHAPTER:3-REPRODUCTION IN HUMAN

- Humas :- sexual reproduction, viviparous, unisexual.
- Each sex has pair of gonads, reproductive duct and accessory structure

REPRODUCTIVE EVENTS

- 1. Gametogenesis- formation of gametes (sperms/ova)
- 2. Insemination—transfer of sperms in to the female genital tract
- 3. Fertilization—fusion of male and female gametes leading to formation of zygote
- 4. Implantation--development of blastocyst and its attachment to the uterine wall
- 5. Gestation—embryonic development (from conception to birth)
- 6. Parturition—delivery of the baby(childbirth)

MALE REPRODUCTIVE SYSTEM:-

Located in pelvis region
The male reproductive system includes:-

- A pair of testis.
- Accessory ducts:-Rete testis, vasa efferentia, epididymis, vas deference.
- Accessory glands-Seminal vesicle, A prostrate gland, bulbourethral gland.
- External genialia-Penis.

TESTIS-

- Paired male gonads-produce sperm, hormones.
- Oval in shape, length 4-5 cm, a width 2 -3 cm.
- Situated out side of abdominal cavity within a pouch called scrotum.
- Scrotum -low temperature of testis (2-2.5 degree C lower than the body temperature)-Spermatogenesis.
- Testis is covered by a dense covering capsule tunica albuginea.
- In each testis 250 compartments called Testicular lobules.
- Each lobule -1-3 convoluted (coiled) Seminiferous tubules.

SEMINIFEROUS TUBULES:-SPERM PRODUCTION

Lined on its inside by two types of cell

- a. Male germ cell-(spermatogonia) -Meiosis division -Sperm formation.
- b. Sertoli cells-(supporting cells) -Provides nutrition to germ cells.

Regions out side the seminiferous tubules called interstitial spaces, contains small blood vessels and interstitial cells/Leydig cell.

Leydig cell-Synthesis and secrets male hormones Androgen (Testosterone).

ACCESSORY DUCTS

- Vase deference-receives duct-seminal vesicle.
- Opens into urethra as-ejaculatory duct.
- Function-Stores and transports sperm from testis to urethra.
- Urethra originates from urinary bladder extends through penis to external opening Urethral meatus.

EXTERNAL GENITALIA-PENIS-

- External copulatory organ external genitalia
- Made of special tissue- erection to facilitate insemination
- Enlarge distal end glans penis covered by loose skin called fore skin

FEMALE REPRODUCTIVE SYSTEM

The female reproduction system is located in the pelvic region. It includes:

- 1.A pair of ovaries
- 2.A pair of oviduct.
- 3. Uterus
- 4.Cervix
- 5. Vagina
- 6.External genitalia.
- oviducts, uterus, vagina accessory ducts
- a pair of the mammary glands (nourishment of offspring)
- All parts are integrated structurally and functionally to support the processes of ovulation, fertilization, pregnancy, birth and child canal.

FEMALE GONAD -OVARIES-

- Ovaries are the female primary sex organs that produce female gametes-Ovum.
- It also produces several female steroid hormones-estrogen and progesterone.
- Ovaries located in the lower abdomen.

Each ovary is about 2-4 cm in length. These are connected to the pelvic wall and uterus by ligaments.

- Each ovary is covered by thin epithelium which enclose ovarian stroma.
- At the peripheral cortex follicles present and in
- medulla blood vessels and ovarian ligaments are present.

Figure 3.3 (b) Diagrammatic sectional view of the female reproductive system

T.S. OF OVARY-

- Developing follicles in different
- stages.
- Primary follicle develops into secondary, tertiary and graafian follicle with mature ovum.
- One matures around 14th day of menstrual cycle and ruptures to release the oocyte -Ovulation.
- After release follicle filled with blood clot and then yellow cells called corpus luteum(secrets progesterone).
- Oviducts (fallopian tubules), Uterus and vagina-Accessory duct.

ACCESSORY DUCTS-

- Oviduct fallopian tubule-10-12 length, from periphery of each ovary to uterus.
- Part closer to ovary funnel shaped infundibulum-edge finger like projection Fimbriae(collects of ovum after ovulation) wider part oviduct ampulla, isthmus has narrow lumen and joins uterus.

THE ACCESSORY GLANDS/ORGANS

FUNCTIONS OF THE SEMINAL VESICLES

- The seminal vesicles secrete into the vas deferens an alkaline fluid (which neutralizes the acid in the vagina).
- It secrets fructose (which provides energy for the sperm).
- It also secrets prostaglandins (which increase sperm viability and stimulate female uterine contractions that help sperm move into the uterus).
- It contributes about 40 60% of the total ejaculate.

THE ACCESSORY GLANDS/ORGANS

- FUNCTIONS OF THE PROSTATE GLAND
- It secrets a thin, milky, alkaline fluid that helps sperm viability.
- The fluid helps to neutralize the acidity of other seminal fluids.
- This helps to enhance sperm viability.
- The total secretion of the prostate accounts for about 20-30% of the total ejaculation.
- Assist in the first stage of male orgasm.

Bulbourethral Glands

- Location
 - Inferior to the prostate gland
- Appearance
 - Tiny, pea size gland
- Function
 - Secrete a clear, thick alkaline mucus to neutralize acid from urine in the urethra.

Copyright © 2000 Pearson Education, Inc., publishing as Benjamin Cummings

UTERUS /WOMB AND VAGINA-

- Single uterus present in lower abdomen region also called womb.
- Hallow inverted pear shaped attached to pelvic wall by ligaments.
- Inside the uterus fertilized ovum grows and develops into embryo.
 - Opens into vagina through narrow cervix(cavity cervical canal).
 - Cervical canal along with vagina called Birth canal.
- The wall of the uterus has three layers of tissues:
 - a. Perimetrium-External thin membranous.
 - b.Myometrium-middle thick layer of smooth muscles, strong contraction during delivery.

b. Endometrium-Inner glandular layer, lines uterine cavity, cyclical changes during menstrual cycle.

EXTERNAL GENITALIA-

- Mons pubis, labia majora, labia minora ,hymen ,clitoris.
- Mons pubis is a pad of fatty tissue covered with hairs.
- Labia majora-fleshy folds of tissue surround the vaginal opening.
- Labia minora-Paired folds of tissue under labia majora.
- Clitoris-Tiny finger like structure, lies at the upper junction of two labia majora.

Hymen-Just inside the opening of the vagina often torn during the first coitus(intercourse).

• The presence and absence of the hymen is not a reliable

indicator of virginity.

MAMMARY GLAND-

- Paired glandular tissue variable amount of fat.
- Glandular tissue divided into 15-20 Mammary lobules containing cluster of cells called alveoli.
- Alveoli secrets milk- stored in lumen (alveoli).
- Tubules of each lobe join in mammary duct.
 - Many ducts join to form mammary ampulla-which is connected lactiferous duct through which milk sucked out.

Figure Mammary gland shown in a mid-sagittal section.

GAMETOGENESIS-

- The process of formation of haploid gametes from diploid germ cell in the gonad is called gametogenesis.
- Take place primary sex organ(Testis and ovary) and produce sperm and ova.
- In male- spermatogenesis(spermatogonia) begins at puberty.
 - In female-oogenesis(oogonia) and starts at embryonic stage.

SPERMATOGENESIS-

It is the process of formation of spermatids. It involves three sub stages:(1)Multiplication phase-

• The spermatogonia(spermatogonium) undergoes repeated mitotic division and forms large number of diploid spermatogonia cells(46).

(2) Growth phase:

The spermatogonia cells grow in size by increasing cytoplasm and matures to form primary spermatocytes.

(3). Maturation phase:

The diploid primary spermatocyte undergoes first <u>mei</u>osis resulting in the formation of two equal haploid cells called **secondary spermatocyte** (23 chromosomes).

This later undergoes second meiotic division to produce four equal haploid spermatids

Spermiogenesis:

Inactive non-motile spermatids are transformed into active motile spermatozoa (sperms)

After spermiogenesis sperm head- embedded in Sertoli cells &

release from seminiferous tubules- Spermiation.

SPERMSTRUCTURE

• Plasma membrane envelops entire body.

Part o	
Head	 Elongated haploid nucleus Anterior cap like acrosome Acrosome has hydrolytic enzymes {hyaluronidase}. It is derived from Golgi complex during division - fertilization of ovum
N eck	Connecting head and middle piece
M iddle part	Many mitochondria (produce energy for the movement of tail – motility)
Tail	Long slenderVibration

• 200-300 million sperms – one ejaculation 60% must have normal shape ,size and 40% motility

OOGENESIS-

The process of formation of haploid female gamete ovum in the follicles of ovary is called oogenesis.

OOGONIA-

Gamete mother cell (2n) At birth many million in fetal ovary

Primary oocyte

- Propahse -1 of meiotic division.
- Temporary arrested in this stage

PRIMARY FOLLICLE-

- Primary oocyte+ granulosa cells
- M ay follicles degenerate from birth to puberty
- 60,000 to 80,000 in each ovary (puberty)

SECONDARY FOLLICLE-

• Primary follicles surrounded by more granulosa cells & theca

Tertiary follicle-

- Secondary follicles-fluid filled cavity-antrum
- Theca layer- theca interna (vascular) and theca externa(fibrous).
- Theca interna 10-15 layer follicle cells (membrane granulosa).
- Primary oocyte (2n) within follicle size increase and first meiotic division-unequal large haploid secondary oocyte and first polar body.

Secondary oocyte-

- Retain nutrient reach cytoplasm of primary oocyte.
- Tertiary follicle into graafian follicle.
- Secondary oocyte (ovum) -zona pellucida(membrane).
- Graafian follicle raptures and release ovum

OOGENESIS-

The process of formation of haploid female gamete ovum in the follicles of ovary is called oogenesis.

- Oogenesis starts from embryonic stage.
- Germinal epithelium of ovary divides mitotically to produce millions of
- gamete mother cell or oogonia.
- No oogonia formed or added after birth.
- Oogonia enters into meiosis-I. It proceeds Prophase-1, get suspended and forms primary Oocytes.
- during puberty, the primary oocyte restarts its first meiotic division.

1. Multiplication phase:

- Certain primary germ cells (large size & nuclei) of germinal epithelium lining ovary undergo rapid mitotic division.
 - It result in formation of group of diploid egg mother cell oogonia.
 - Each group of cells forms a rounded mass called egg nest.

2. GROWTH PHASE-

- Long duration 12-13 year.
- One of the diploid oogonia undergoes growth increasing in cytoplasm and accumulation of yolk and transform to enlarge oogonia called primary oocyte(2n).
- Other oogonia form single layered follicular epithelium-primary follicle.
- Primary follicle surrounded by more granulosa cell-Secondary follicle.
- Secondary follicle-fluid filled antral cavity-Antrum- tertiary follicle.
- Tertiary follicle- Graafian follicle.

3. Maturation phase-

- A fully grown primary oocyte (2n) undergoes I meiotic division results in the formation of two unequal sized haploid cells.
- The large secondary oocyte(undergoes II meiotic division to form a large ootid/ovum and a small 2 nd polar body.
- Secondary oocyte forms new membrane -Zona pellucida-Graafian follicle.
- The I st polar body also undergoes equal division to produce two cells.
- Thus during oogenesis four cells are produced, among them one is functional ootid and three are non functional polar bodies. The ootid with very little change becomes an ovum.

MENSTRUAL CYCLE:

- Reproductive cycle of female primates is called menstrul cycle.
- Menstruation is the term given to the periodic discharge of blood, tissue, fluid and mucus from the reproductive organs of sexually mature females. The flow usually lasts from 3 6 days each month and is caused by a sudden reduction in the hormones estrogen and progesterone.
- The menstrual cycle begins when a female reaches the age of puberty. The first menstruation begins at puberty is called menarche.
- Durng the menstrual cycle the uterus endometrium prepares itself for implantation of a fertilized egg. If fertilization does not occur the uterus ling is shed from the body.
- Menstrual cycle repeated at an average interval of 28 days. One ovum is reeased in the middle usually 14th day of each menstrual cycle.

Phases of menstrual cycle-

- '-... The cycle can be divided into four Phases:
- 1. Menstrual phase (bleeding period).
- 2. Follicular (before the egg is released).
- 3. Ovulatory phase(egg is released).
- 4. Leuteal(after released of the egg)

1. Menstrual phase (bleeding period)

- It is the 1st phase of menstrual cycle lasts for 3-5 days.
- Breakdown of endometrial lining and blood vessel occurs. It leads to bleeding comes out through vagina.
- It occurs only when ovum released and fertilization does not occurs.
 - Lack of menstruation is the indication of pregnancy.

2.Follicular phase:-

- 1-14 days
- Menstrual phase followed by follicular phase.
- Primary follicle grows -Graafian follicle and endometrium regenerates-proliferation.

- Gonadotrophin(pituitary gland) -FSH and LH increases .
- Estrogen secretion from growing follicles.
- FSH and LH attains peak in middle of cycle(14 day).
- Rapid secretion of LH-LH surge induces graafian follicle to rupture and release

Ovum(ovulation).

3. Leuteal phase/secretory phase-

- This phase begins after ovulation.
- Ruptured Graafian follicle transformed into corpus luteum. It produces large amount of **progesterone** essential to maintain & proliferate endometrium
- Endometrium- necessary for implantation of fertilized egg/ ovum & does not shed during pregnancy
- If fertilization occurs corpus luteum grows further and pregnancy continues. Menstrual cycle stops up.
- In absence of fertilization, Graaffian follicle transforms to yellow

bodied Corpus luteum

- Progesterone level decreases. C. luteum degenerates to Corpus albican
- Decrease in Progesterone leads to menstruation
- Menstrual cycles ceases at 50 years- Menopause.
- Cyclic menstruation is indicator of normal reproductive phase & extends between menarche & menopause.

Fertilization and Implantation-

- Sperm contacts with zona pellucida of ovum & induces changes in membrane that blocks entry of other sperm
- Acrosome of sperm secretes lytic enzymes (hyaluronidase) helps in penetration into the ovum cytoplasm through zona pellucida & plasma membrane
- Meiotic division of secondary oocyte after

sperm enters plasma membrane of the ovum.

- Second meiotic division second
 polar body and ovum / ootid
 - Nucleus of Ovum + Sperm = **Zygote**

Sex of baby decided this stage.

- During copulation (coitus) semen is released by the penis into the vagina is called *insemination*.
- The motile sperms swim rapidly, pass through the cervix, enter into the uterus and finally reach the junction of the isthmus and ampulla (ampullary-isthmic junction) of the fallopian tube
- Fertilization if the ovum and sperms are transported simultaneously to the ampullary isthmic junction.

The process of fusion of a sperm with an ovum is called **Fertilisation.**

- Sex of a baby is determined during fertilization and in the zygote.
- Sex is determined by the sex-chromosomes present in zygote.
- Human contain 2 sets of chromosome- autosome & sex chromosome.

• Sex chromosome present in human female is XX and male XY.

All the female gametes (ova) produced has 22 autosome and only 'X' chromosome.

- Sperms produced by male, 50% has 22 autosome with 'X' and SO % has 22 autosome with 'Y' chromosome.
- The fusion of sperm with Y chromosome with ovum (X) results in male baby- XY & fusion of sperm with X chromosome with ovum (X) results in female baby.(XX).
- Zygote carrying XX chromosomes develop into female and with XY chromosome develops into male.

- Zygote from isthmus (oviduct) to uterus-mitotic division, first cleavage in first 36 hrs.
- 2,4,8,I6 daughter cells-blastomeres
- Embryo with 8 16 blastomeres Morula
- Morula division continues hollow ball called Blastocyst.
- The blastome res in blastocyst arranged into two layers. An outer layer called troph oblast and an inner cells called inner cell mass.
- Trophoblast cells attaches to the endomet rium. Ithelps in implantation and development of placenta.
- Inner cell mass gets differentiated into the embryo.
- The complete attachment of Blastocyst to the uterine endometrium is called **implantation**.

PREGNANCY & EMBRYONIC DEVELOPMENT

- Chorionic villi-finger like projections on trophoblast
- Villi surrounded by maternal blood, uterine tissues
- Villi & uterine tissue- interdigitated -structural & functional unit between foetus (embryo) & maternal body- Placenta
- Inner cell mass ectoderm, mesoderm, endoderm different organs

Function of Placenta:

- Helps in nutrition of embryo & Transports nutrients like amino acids, sugars, vitamins form maternal blood to fetal blood.
- Respiration of embryo-exchange of 0_2 & $C0_2$ through diffusion from fetal blood to maternal blood vice versa.
- 3. Excretion -nitrogenous waste like urea into maternal blood

- 4.Endocrine gland- estrogen, progesterone, human chronic gonadotropin (h CG) & human placental lactogen (h PL)
 - s. Antibodies- diphtheria, small pox, measles etc., pass to fetus from meternal

Daylight 9:2000 Person Education, No., pullstring on Bergero Carmings.

- hCG, hPL & relaxin- only during pregnancy
- Other hormones like estrogen, progesterone, cortisol, prolactin, thyroxinincreases several fold in maternal blood
- Hormones- supporting fetal growth, metabolic changes in mother & maintenance of pregnancy
- After implantation- inner cell mass differentiates- outer ectoderm and inner endoderm & middle mesoderm soon appears- tissue & organs
- Inner cell mass contain certain cells- Stem cells- potency to give rise to all tissues & organs
- Pregnancy will last for 9 months divided as 3 trimesters 1st:- end of 3rd month, 2nd:- end of 6th month & 3rd:- end of 9th month

- Mammary gland of female undergo differentiation & produce milk towards end of pregnancy- Lactation
- The mammary gland starts producing milk towards the end of the pregnancy.
- Milk produced during initial days of lactation is called colostrum. It contains several antibodies which provide immunity (passive) or resistance to the new born baby.
- The milk production is controlled by Lacto trophic or prolactin hormone secreted by pituitary.
- Breast feeding during initial period of infant growth is recommended for bringing up a healthy baby

- Ist month- embryo heart formed
- · First sign- listening heart sound through stethoscope
- 2nd month- limbs & digits, end of 12 weeks(first trimester)- major organ system- limbs, external genital organs
- Ist movement & hair on head-during fifth month
- End of 24 week (second trimester)- body covered with fine hair, eye lid separate, eyelashes formed
- · End of nine month-foetus fully developed & ready for delivery

barrier- toxic chemicals & germs

Effective

PARTURITION

- The period of pregnancy is called gestation period. It is 9 months in human.
- The delivery of foetus is called parturition. It occurs by the contraction of uterine Myometrium.
- The signal of parturition is originated from the fully developed foetus and the placenta. It induces mild contraction of uterus called fetal ejection reflex.
- Hormone (adrenal gland) secreted by foetus diffuses to maternal blood
 & stimulate oxytocin secretion
- Oxytocin causes forceful contraction of myometrium (labour pain) & stimulates further secretion of oxytocin
- Stimulatory reflex between uterine contraction & Oxytocin secretion continues inducing stronger contraction & pushes the foetus by dilated cervix (birth canal) facilitated by relaxin-parturition
- After delivery the placenta is also expelled out of the uterus.

LACTATION

- Mammary gland of female undergo differentiation & produce milk towards end of pregnancy- Lactation
- The mammary gland starts producing milk towards the end of the pregnancy.
- Milk produced during initial days of lactation is called colostrum. It contains several antibodies which provide immunity (passive) or resistance to the new born baby.
- The milk production is controlled by Lacto trophic or prolactin hormone secreted by pituitary.
- Breast feeding during initial period of infant growth is recommended for bringing up a healthy baby